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Pa3pa6oTka HHTEIEKTYATbHBIX CHCTEM AHAJIN3a U MPOTHO3UPOBAHUSI HA OCHOBE
MAIINHHOTO 00yYeHHsI: KOMIIIEKCHBII MOIX0/] K pelleHUI0 3a/1a4 MaTepHaJoBeeHus U
Knbepoe30nacHoCcTH

AHHOTALUA

B pabore mnpemnoXkeH KOMIUIEKCHBIH MOAXOA K pa3pabOTKe HWHTEIUIEKTYalbHBIX CHCTEM aHalW3a H
MIPOTHO3UPOBAHMA C MCIOJIB30BAHIEM COBPEMEHHBIX METONOB MAaIIMHHOTO 00ydeHus. MccinenoBanue oxBaThIBaeT JBa
HaIpaBJIeHHs: IPOTHO3UPOBaHHE CBONCTB KOMIIO3UTHBIX MaTrepualioB U OOHapyXKeHHue OOTOB B COLMAIBHBIX ceTsx. s
pelIeHus IepBoii 3a1a4u pa3padboraHa ruOpuaHas MOJIEIb, 00BbEUHSIOIAs (PH3UYECKHE MPUHIUIIBI K METOJIBI ITyOOKOTO
00y4eHus1, 00ecreyrBIIIasi BHICOKYIO TOUHOCTD ITPEACKa3aHUs MEXaHUUECKHMX XapaKTePUCTHK MaTeprualioB. i 1eTeKuuu
00TOB IPUMEHEH MYJIBTHMOAAIBHBIN MOJIX0]I, COUETAIOLINN aHAIN3 TEKCTOB Tpe]] 00yYEHHBIMHU SI3BIKOBBIMH MOJIEIISIMH C
rpadoBBIM aHAIM30M COLMAIBHBIX CTPYKTYD, YTO MO3BOJIMIIO AOCTHUYb IOKa3aTelel, MPEBOCXOIAIINX CyLIIECTBYIOIIUE
peueHust. DKCIeprMeHTa bHas IPOBEpKa BBHITIOJIHEHA HA MACIITa0HBIX HA0Opax JaHHBIX, BKIItoUaronumx oonee 10 ThIC.
oOpasmoB MarepuasioB W 1 MiH mnpoduiel momp3oBaTeNed CONMAaNbHBIX ceTell. IlomydeHHble pe3ynbTaThl
JIEMOHCTPHUPYIOT YIy4IIeHHE KauecTBa MPOTHO3UPOBAHUS U KITaCCH(UKANH 110 CPABHEHUIO C aKTyaJIbHBIMU METOJaMH.
[TpakTHdeckas 3HAYUMOCTh PAaOOTHI 3aKIFOYACTCS B CO3MaHUH MacIITaOMPYEMbIX CHCTEM, IPUTOMHBIX UL IPUMEHEHUS
B IIPOEKTHPOBAHWH HOBBIX MaTE€pHUaJIOB 1 MOHUTOPHHTE OHJIAHH-COOOIIECTB.
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MamnHaJIbIK OKBITY Heri3iHe HHTe/VIEKTYaJIbl TaJ1/1ay AKJHe 0oJIKay KyHesepin
J3ipJiey: MaTepHAJITAHY KIHe KHOepKayilNci3aik Macesie/iepid menmyre KemeHai KesKapac

AHHOTaN NS

Kymbicra 3amanayn MallHaIBIK OKBITY 9IiCTEPIH KOJIIaHa OTHIPBII, MHTEUIEKTYall bl TaJay )KoHE OosnKay
KyitenepiH o3ipieyre KeleH i TOCil YChIHbUIFaH. 3epTTey €Ki OarbITThl KAMTH/IbL: KOMITO3ULIMSUIBIK MaTepuaiapablH
KacHeTTepiH OOJKay JKOHE QJIEYMETTIK JKejisiep/ie 00TTap/bl aHbIKTay. BipiHI MaceleHi ey yIliH MaTepuaiIapaby
MEXaHUKAJIBIK CHUIaTTaMallapblH OOJDKAyAbIH JKOFapbl JANJITIH KaMTaMachl3 €TETiH TEepeH OKBITYIbIH (H3HMKaJIbIK
MIPUHITUIITEP] MEH dIiCTepiH OipiKTIpeTiH THOPUATI MOEIH XKacaiabl. BOTTapIel aHBIKTAY YIIiH MYIETHMOJAIBIBI TOCII
KOJIIAaHBUIBI, O MATIHAEpAl aJlAbIH-ala JalblHAAIFaH TIJIK MOJEIbICPMEH TaJay/abl JJISyMETTIK KYPBUIBIMAAPIbIH
rpaduKanslk TangaybiMeH OipikTipai, OyJl KOJJaHbICTarbl HICMIIMAEPICH JKOFapbl KOPCETKIIITepre KOl JKETKizyre
MYMKIHAIK Oepzai. OkcrepuMeHTTIK Tekcepy 10 MbIHHaH acTaM MaTepHaln YArulepi MeH oJeyMeTTIK Kemijepii
naigananynbuIapAbH | MITH IpoQritiH KAMTHTBIH ayKbIMIIBI IEpEKTEp KUBIHTHIFBIH A OpbIHAANIbI. HoTrokenep Kasipri
ONICTEpPMEH CaJIbICThIPFaHIa OOJDKay MEH IKIKTEy CalachlHBIH JKaKcapraHblH Kepcereli. JKYMBICTBIH MPaKTHKAJIbIK
MaHBI3JIbUIBIFbI-)KaHA MaTepUaNIap/ibl jKk00ajayja xoHe OHJIalH KaybIMAACTBIKTap/bl OaKbUIaya KOJJaHyFa dKapaMabl
MacIITa0TaIaThIH XYHETepi Kypy.
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Development of intelligent analysis and forecasting systems based on machine learning:
an integrated approach to solving problems of materials science and cybersecurity

Annotation. The paper proposes an integrated approach to the development of intelligent analysis and
forecasting systems using modern machine learning methods. The research covers two areas: predicting the properties of
composite materials and detecting bots in social networks. To solve the first problem, a hybrid model was developed that
combines physical principles and deep learning methods, providing high accuracy in predicting the mechanical
characteristics of materials. To detect bots, a multimodal approach was applied, combining text analysis with pre-trained
language models with graph analysis of social structures, which allowed achieving indicators superior to existing
solutions. The experimental verification was performed on large-scale datasets, including more than 10 thousand samples
of materials and 1 million profiles of users of social networks. The results obtained demonstrate an improvement in the
quality of forecasting and classification compared to current methods. The practical significance of the work lies in the
creation of scalable systems suitable for use in designing new materials and monitoring online communities.

Keywords: machine learning, deep learning, composite materials, bot detection, graph neural networks,
transformers, prediction of material properties, social network analysis, intelligent systems, artificial intelligence.

Introduction.The modern era of digital
transformation is characterized by exponential
growth in data volumes and the increasing
complexity of tasks requiring intelligent
analysis and prediction. According to the
International Data Corporation (IDC), the global
data volume will reach 175 zettabytes by 2025,
creating unprecedented opportunities and
challenges for the development of intelligent
analytics systems. Machine learning (ML) and
artificial intelligence (Al) are becoming critical
tools for extracting valuable insights from this
wealth of information and making informed
decisions across various fields of science and
engineering [1].

The development of intelligent analytics
and prediction systems based on machine
learning 1s an interdisciplinary field that
combines advances in computer science,
mathematical statistics, optimization theory, and
specific application domains. Two areas are
particularly relevant: materials science and
cybersecurity, where traditional analysis
methods have reached their limits.

In materials science, the development of
new composite materials with desired properties
traditionally requires numerous expensive
experiments and lengthy iteration cycles.
Composite materials, which form the basis of
the modern aerospace, automotive, and
construction  industries, exhibit complex
nonlinear behavior dependent on numerous
factors: matrix and filler composition, their
volume fractions, morphology, and production
and operating conditions. Traditional finite
element modeling methods, while providing
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high accuracy, require significant computational
resources and time, making them inapplicable
for rapid optimization and materials screening
[2-5].

Problem Statement.Mecanwhile, social
media cybersecurity is experiencing a sharp
increase in the activity of automated accounts
(bots) used to spread disinformation, manipulate
public opinion, and conduct cyberattacks.
Researchers estimate that up to 15% of all
Twitter accounts may be bots, posing serious
threats to information security and democratic
processes.

Objectives.Existing  bot  detection
methods based on the analysis of individual
features or simple heuristics are ineffective
against today's increasingly sophisticated bots
that mimic human behavior. Development of a
hybrid architecture combining the advantages of
deep learning (automated feature extraction,
processing of unstructured data) with classical
ML methods (interpretability, efficiency on
small samples).

Development of an information-
analytics system for predicting the mechanical,
thermal, and electrical properties of composite
materials, taking into account multiscale
structures and physical constraints.
Development of an algorithm for detecting bots
in social networks based on multimodal analysis
of text data, behavioral patterns, and the
structure of the social graph. Conducting
comprehensive experiments on real data to
evaluate the effectiveness of the proposed
methods and compare them with existing
approaches.
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Development  of  software  and
recommendations for integrating the proposed
solutions into  existing industrial and
information systems. A new paradigm for
building intelligent systems is proposed, based
on the principle of adaptive hybridization of
machine learning methods depending on the
nature of the problem being solved and the
available data. A mathematical framework for
formalizing the process of selecting the optimal
model architecture based on meta-learning and
automated machine learning (AutoML) is
developed. A method for integrating domain
knowledge into the training of neural networks
using physics-informed loss functions (PINN).

An original multiscale neural network
architecture for predicting the properties of
composite materials has been developed, taking
into account the hierarchical structure of the
material from the nanoscale to the macroscopic
level. A new approach to bot detection is
proposed, based on the dynamic analysis of the
evolution of behavioral patterns using temporal
graph neural networks (Temporal GNN). An
explainable Al (XAI) method has been created
for interpreting the decisions of deep models in
the context of materials science and
cybersecurity. A significant improvement in the
accuracy of predicting the properties of
composite materials was achieved (by 15-20%
compared to existing methods) while
simultaneously reducing computational costs by
10-50 times compared to finite element
methods. A bot detection algorithm was
developed that demonstrates resistance to
adversarial attacks and is capable of identifying
new, previously unknown bot types with an
accuracy of over 90%. Software implementing
the proposed methods was created and
integrated into real industrial processes.

Background.The history of
computational methods in materials science
spans over half a century, beginning with work
on the finite element method (FEM) in the
1960s. Classical approaches to modeling
composite materials were based on solving
systems of differential equations describing the
mechanical behavior of the material at various
scales. The finite element method, developed by
Zienkiewicz and Cheung, enabled detailed
analysis of the stress-strain state of composites,
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but required significant computational resources
and expert knowledge to construct adequate
models.

Analytical models such as the Rule of
Mixtures, the Halpin-Tsai model, and Effective
Medium Theory provided rapid estimates of
composite properties, but their accuracy was
limited by simple geometries and linear
approximations. The Mori-Tanaka model, which
accounts for inclusion interactions through a
mean stress field, expanded predictive
capabilities for composites with moderate filler
volume fractions, but still could not adequately
describe complex nonlinear effects and failure.

Micromechanical models developed by
Hashin, Christensen, and Aboudi allowed for the
consideration of localized effects and
inhomogeneities at the microscale. The
representative volume element (RVE) method
became the standard for multiscale modeling,
but its application was limited by computational
limitations when attempting to capture the actual
microstructure of a material. A revolutionary
shift toward data-driven approaches in materials
science began in the 2000s with the development
of the Materials Genome Initiative (MGI).
Launched in the United States in 2011, this
initiative aimed to double the speed of discovery
and implementation of new materials while
reducing costs. A key element of MGI has been
the creation of extensive databases of materials
properties and the  development  of
computational methods for their analysis.

The first successful applications of
machine learning in materials science involved
the use of simple regression models and decision
trees to predict alloy properties. The work of
Rajan and colleagues demonstrated the
feasibility of using data mining methods to
identify hidden patterns in large sets of
experimental data. The use of support vector
machines (SVM) and random forests enabled
acceptable prediction accuracy to be achieved
with significantly lower computational costs
compared to ab initio calculations [2].

The development of high-throughput
computing and automated experimental setups
has led to an exponential increase in the
availability of materials data. The Materials
Project, AFLOW, and OQMD have created
databases containing information on millions of
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compounds calculated using density functional
theory (DFT) methods. This paved the way for
the application of more complex machine
learning methods, which require large volumes
of training data.

A breakthrough in the application of
deep learning to materials science occurred in
the mid-2010s. Xie and Grossman's work on
using crystal graph neural networks (CGCNNs)
to predict the properties of crystalline materials
ushered in a new era in computational materials
science. CGCNN s represent the crystal structure
as a graph, where nodes correspond to atoms and
edges to chemical bonds, allowing for a natural
accounting of the structure's topology.

The wuse of convolutional neural
networks (CNNss) to analyze the microstructures
of composite materials was first demonstrated
by Cecen and colleagues. They demonstrated
that CNNs can effectively extract features from
electron microscopy images of microstructures
and predict mechanical properties with high
accuracy. Developments in this field have led to
the creation of generative models capable of
synthesizing realistic microstructures with
desired properties.

Transformers, originally developed for
natural language processing, have found
application in materials science for analyzing
atomic sequences in polymers and proteins. The
MatBERT model, pre-trained on scientific
publications on materials, has demonstrated the
ability to extract semantic relationships between
the composition, structure, and properties of
materials from unstructured text data.

The history of automated social media
accounts began almost simultaneously with the
emergence of the platforms themselves. The first
bots were relatively primitive, using simple
scripts to send mass spam and were easily
detected by their abnormal post frequency and

repetitive  content. However, with the
development  of  artificial intelligence
technologies, bots became increasingly

sophisticated, imitating human behavior and
social interactions.

The first generation of bot detection
methods was based on the analysis of statistical
anomalies in account behavior. Lee and
Caverlee presented a system for identifying
spambots based on the analysis of tweet
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frequency, the ratio of followers to unfollowed
users, and activity time. These methods
demonstrated high accuracy for simple bots but
proved vulnerable to more complex camouflage
strategies.

The second generation of methods
involved analyzing the content of publications
using natural language processing (NLP).
Classifiers based on n-grams, TF-IDF
vectorization, and naive Bayes classifiers made
it possible to identify bots based on
characteristic linguistic patterns. However, the
emergence of bots that copied real user content
or generated plausible text using Markov chains
reduced the effectiveness of these approaches.

A revolutionary step was the application
of graph theory and network analysis to bot
detection. A social network is naturally
represented as a graph, where nodes represent
users and edges represent social connections
(followings, mentions, retweets). Analysis of
topological graph characteristics, such as node
degree, clustering coefficient, closeness
centrality, and betweenness centrality, made it
possible to identify anomalous patterns
characteristic of bots.

Work by Ferrara and colleagues
demonstrated that bots often form tightly knit
communities (bot nets) with characteristic "star"
or "clique" topologies. Community detection
methods based on the Louvain and Label
Propagation algorithms made it possible to
identify coordinated groups of bots participating
in information campaigns [3].

The development of graph embedding
methods opened up new possibilities for
machine learning on graph data. The Node2 Vec,
DeepWalk, and GraphSAGE algorithms made it
possible to transform structural information in
graphs into vector representations suitable for
use in classical machine learning algorithms.
This significantly improved the quality of bot
detection, especially for cases where bots
attempt to mimic the normal structure of social
networks.

The application of deep learning to bot
detection began with the use of recurrent neural
networks (RNNs) and long short-term memory
(LSTM) to analyze temporal sequences of user
activity. Kudugunta and Ferrara's work
demonstrated that LSTMs can effectively model
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temporal behavior patterns and detect anomalies
characteristic of automated accounts.

A breakthrough was the use of pre-
trained language models based on transformers.
BERT (Bidirectional Encoder Representations
from Transformers) and its modifications
(RoBERTa, ALBERT, and DistilBERT)
demonstrated outstanding results in analyzing
social media text content. The TWHIN-BERT
model, specifically retrained on Twitter data,
allowed it to account for the specifics of short
texts and social context.

Graph  neural networks (GNNs)
represent the most promising approach to bot
detection. Graph Convolutional Networks
(GCN), Graph Attention Networks (GAT), and
GraphSAGE architectures allow for
simultaneous consideration of both node
attributes (user characteristics) and the structure
of the social network graph. Research using
heterogeneous graph neural networks (GNNs)
takes into account various types of nodes (users,
tweets, hashtags) and connections
(subscriptions, retweets, mentions),
significantly improving detection quality.

Research Methods.General principles
for building intelligent systems. Despite the
apparent disparity between the tasks of
predicting material properties and bot detection,
they share common methodological
foundations. Both tasks require processing
multimodal data: in materials science, this
includes images of microstructures, spectra, and
numerical compositional characteristics. In
social network analysis, this includes text,
images, activity time series, and graph structure.

Composite materials have a multiscale
organization, ranging from the nanoscale to
macroscopic properties. Social networks are
also organized hierarchically: individual users,
communities, and the global network.

Working with incomplete and noisy data:
Experimental data on materials often contains
measurement errors and missing values. Social
media data is also susceptible to noise and
intentional distortions. Transfer learning 1is
becoming a key technology for the efficient use
of limited data in specialized fields. In materials
science, pre-trained models on large databases
of crystal structures can be further trained for
specific classes of composites. Similarly, in bot
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detection, models trained on data from one
social network can be adapted to another
platform with minimal retraining [4].

Meta-learning, or "learning to learn,"
enables the creation of models that can quickly
adapt to new tasks based on a small number of
examples. Model-Agnostic Meta-Learning
(MAML) and Reptile algorithms demonstrate
effectiveness in few-shot learning tasks, which
is particularly important for detecting new types
of bots or predicting the properties of new
classes of materials.

The development of AutoML methods
significantly = simplifies the process of
developing machine learning models by
automating algorithm selection, hyperparameter
tuning, and feature engineering. AutoML
systems such as Google AutoML, H20.ai, and
Auto-sklearn enable non-ML experts to create
effective models for their domains.

Neural Architecture Search (NAS) is a
specialized subset of AutoML for the automated
design of neural network architectures. The
ENAS, DARTS, and ProxylessNAS algorithms
enable the discovery of optimal architectures for
specific  tasks, outperforming  solutions
developed manually by experts.Let us consider
a general formalization of the prediction
problem in the context of intelligent systems
development. Let X © R» represent the input
feature space, and Y S R™ the target variable
space. The supervised learning problem is to
find a function f: X — Y that minimizes the
expected risk:

R(D=E_((x,y)~Py) [L(F(x),y)], where L:
Y XY — R is the loss function, and Pyy is the
joint distribution of the input data and target
variables.

In the context of predicting the properties
of composite materials, X may include: -
Chemical composition of the components
(vector of element concentrations) -
Microstructure parameters (grain size, porosity,
fiber orientation) - Synthesis conditions
(temperature, pressure, time) - Microstructure
images (pixel tensors). Target variables Y
represent mechanical properties: - Elastic
modulus (E) - Tensile strength (omax) -
Poisson's ratio (v) - Thermal conductivity (k) -
Electrical conductivity (ce).
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For the bot detection problem, the
formalization takes the form of a binary
classification, where X includes: - Text features
(tweet embeddings) - Temporal features (post
frequency, activity time) - Graph structural
features (node degree, clustering coefficient) -
Behavioral patterns (action sequences)

And Y € {0, 1} indicates the user class
(0 - human, 1 - bot).

Multi-task learning. To effectively
exploit correlations between different material
properties, the multi-task learning (MTL)
paradigm is used. Formally, for K connected
problems with a common feature space X and
distinct output spaces Y1, ..., Y, the objective
function takes the form:

LMTL (Hsharedr 91! k ) Hk)
= z AiLi(Hshared' Hi)
i=1

+ 'Q(eshared' 61) ] Hk);

Where Oshared are the parameters of the
shared network layers, 0; are the parameters
specific to task i, A; are the task weights, and Q
is a regularization term that encourages
knowledge transfer between tasks.Accounting
for physical constraints. To improve the
reliability of predictions and ensure physical
consistency of the results, terms reflecting
known physical laws are included in the loss
function. For composite materials, these may
include constraints such as:

Lpnysics = a1 * max(0,v — 0.5)* + a,

* max(O, Elower - Epred)2 + as
* ||V2T — kVT]||?

where the first term ensures physically
realistic values of Poisson's ratio, the second
ensures compliance with the lower bound of the
elastic modulus according to the rule of
mixtures, and the third ensures consistency with
the heat conduction equation.

For processing microstructural images of
composite materials, a specialized hierarchical
convolutional network (H-CNN) architecture
has been developed that takes into account the
multiscale nature of the material:

Layer 1 (Nano-scale): Conv3x3(64) —
BN — ReLU — MaxPool2x2
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Layer 2 (Micro-scale): Conv5x5(128) —
BN — ReLU — MaxPool2x2

Layer 3 (Meso-scale): Conv7x7(256) —
BN — ReLU — GlobalAvgPool

l

Concat—Dense(512)—Dropout(0.3)—
Dense(256)—Output

The key feature is the use of different
convolution kernel sizes to capture features at
different scales and then combining them
through an attention mechanism:

. QK™
Attention(Q,K,V) = softmax \/d_ vV
k
where Q, K, V are queries, keys, and values
derived from features of different scales.

Graph neural networks for structural

analysis
Graph convolutional networks with an
attention  mechanism  (Graph  Attention

Networks, GAT) are used to model the crystal
structure of materials and social graphs:
R =o( D o wih®)
JeN()
where h i*((1)) i1s the hidden
representation of node i at layer 1, N(i) is the set
of neighbors of node i, W(l) is the learnable
weight matrix, and aij are the attention
coefficients:

O
a;

= softmaxjenc (LeakyReLu(a” [W Or{"||w OR{"])

To handle heterogeneous graphs (for
example, in social networks with different types

of nodes), the Heterogeneous Graph
Transformer (HGT) is used:

(1+1)

h;

= Aggregatey ey (Attention (T(i), (j), ¢)(el-j))

+ h")

Where 1(-) denotes the node type, ¢(-)
denotes the edge type, and the Attention and
Message functions are parameterized by node
and edge types.

Modern adaptive optimizers are used to
efficiently train deep models. Adam with bias
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correction and weight decay (AdamW) showed
the best results:

my = Bime_g + (1 — B1)ge
Ve = Pove—g + (1 — Bz)gtz
t

. m; _ v
T T 1
my
0 = 01 —1( + 46:-1)

Jvr €

Where gt is the gradient at step t, 1 and
B2 are the exponential smoothing coefficients, n
is the learning rate, and A is the weight decay
coefficient.

Methods for Combating Overfitting. To
prevent overfitting, a combination of methods is
used: Adaptive Probability Dropout: The
dropout probability changes depending on the
training epoch: pdrop(t) = pmax - (1 - exp-t/t).

Mixup Augmentation: Linear
interpolation between pairs of training
examples:

X = Axi + (1-A)xj

¥ =Ayi + (1-Myj

where A ~ Beta(a, o)

Stochastic Weight Averaging (SWA):
Averaging the model weights over the last
training epochs to obtain a more robust solution.

Methods based on gradient analysis are
used to understand neural network decisions.
Integrated  Gradients  calculates  feature
importance as:

1G;(x)
— (xi _ xlbasellne)
1 baseline baseline
*f of (x +a(x—x ))d
0 Oxl-
where xbaseline is the baseline input
vector (e.g., zero or the mean of the dataset).
SHAP (SHapley Additive ExPlanations)
SHAP values, based on cooperative
game theory, provide a unified framework for
interpreting models:

SIL(F| =S| = 1)!
i = ISEAFT=1SI=1)

. |F|!
SCF\{i}
— fx(S )]

where F is the set of all features, S is a
subset of features, fx(S) is the model prediction
using only features from S.

Architecture of the Information and
Analysis System

a

[fe(SU{iD)
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The developed information and analysis
system has a modular architecture, including the
following components:

The data acquisition and preprocessing
module imports data from various sources
(experimental measurements, modeling results,
microstructure images), cleansing, normalizing,
and augmenting it.The feature extraction
module automatically extracts informative
features from raw data using computer vision,
spectral analysis, and statistical descriptors.

The machine learning module contains
implementations of various ML/DL algorithms,
including classical methods (Random Forest,
XGBoost), neural networks (CNN, GNN), and
hybrid models.The optimization module
implements Bayesian optimization to select the
optimal composition and synthesis conditions
for materials with target properties.

The visualization and interpretation
module provides interactive dashboards for
analyzing results, including feature importance
maps, sensitivity analysis, and material space
visualization.

Tech Stack.The system is implemented
using modern machine learning and data
analysis technologies. The backend components
are implemented using Python with the FastAPI
framework for REST APIs and Celery for
asynchronous task processing. Deep learning
models are implemented using PyTorch, while
classic machine learning methods are
implemented  using  Scikit-learn.  Data
processing is performed using the Pandas and
NumPy libraries, and image analysis is
performed using OpenCV. PostgreSQL is used
for storing structured data, while MongoDB is
used for storing unstructured data. The system is
deployed in a containerized Docker
environment with Kubernetes orchestration.
Experiment tracking is provided by MLflow,
and system monitoring is provided by a
combination of Prometheus and Grafana.

Results.Data Collection and
Preparation.Dataset Structure.A comprehensive
dataset from various sources was collected for
model training:

Experimental data includes mechanical
test results (tensile, compressive, and bending)
for over 5,000 composite samples with polymer,
metal, and ceramic matrices.
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Microstructural images include over
20,000 images obtained by optical and electron
microscopy (SEM and TEM), with resolutions
ranging from 100 nm to 1 mm.Simulation data
includes finite element modeling results for
3,000 virtual microstructures generated using
the Monte Carlo method.

Data Preprocessing.The data
preprocessing process includes the following
steps:

Missing Value Handling: using the
multiple imputation method (MICE) for
numerical features and mode imputation for
categorical features.Outlier Detection and
Handling: using the Isolation Forest method to
detect anomalies, followed by expert validation.
Normalization: standardization of numerical
features (z-score normalization) and one-hot
encoding for categorical variables.

Dataset balancing: application of
SMOTE (Synthetic Minority Oversampling
Technique) to generate synthetic examples in
areas with insufficient feature space coverage.

Feature Engineering.Specialized
descriptors, grouped into three main groups,
have been developed to characterize composite
materials: Structural descriptors

- Radial distribution function g(r) for
describing short-range order

- Voronoi parameters for characterizing
the local environment

- Fractal dimension for describing
microstructural complexity

Topological descriptors

- Betti numbers for
structural connectivity

- Persistent homology for analyzing
multiscale features

- Euler characteristic for global topology

Statistical descriptors of microstructures

- Two-point correlation function Sa(r)

- Linear phase dimensions (chord length
distribution)

- Structural anisotropy via the orientation
tensor

Machine Learning Models

The following basic algorithms have
been implemented and optimized to solve the
problem of predicting the properties of
composite materials:
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Random Forest Regressor:
hyperparameter optimization (number of trees,
depth, minimum number of samples per leaf) via
Bayesian optimization resulted in an MAE of
4.2% for predicting the elastic modulus.

XGBoost: Using early stopping and a
custom objective function to account for
physical constraints, an accuracy of R* = 0.92
was achieved for the tensile strength.Support
Vector Regression: Using an RBF kernel and
optimized C and y parameters, it showed good
results for small samples (< 500 samples).A
stratified 5-fold cross-validation was used,
taking into account the distribution of target
variables. Additionally, a time-based validation
was conducted to assess the robustness of the
models to changing experimental conditions.

Results of the comparison of various
models for predicting the elastic modulus of
polymer composites:

Model MAE RMSE | R? MAPE
(GPa) (GPa) (%)

Linear 523 6.87 072 | 12.4

Regression

Random 2.14 3.02 0.89 | 4.2

Forest

XGBoost 1.98 2.76 092 | 3.8

Standard 1.76 243 094 | 34

DNN

MS-DNN 1.52 2.11 095 | 2.9

PINN 141 1.98 096 | 2.7

The developed bot detection system is
based on a multi-level analysis, including:
Content level: analysis of text publications,
images, and videos

Behavior level: temporal patterns of
activity, sequences of actions

Social graph level: connection structure,
interaction patterns

Coordination  level:  detection of
coordinated behavior of groups of accounts

Linguistic pattern analysis. Specialized
metrics have been developed to identify
linguistic patterns characteristic of bots: Text
entropy: low entropy indicates repetitive
content. Perplexity: high perplexity may
indicate automatically generated text [5].

Conclusion.This work demonstrates the
successful application of modern machine
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learning methods to materials science and
cybersecurity problems.

Key achievements include the use of
physics-based neural networks for material
property prediction, heterogeneous graph neural
networks for bot detection, and explainable
artificial intelligence methods for model

by integration into real industrial processes and
validation on large datasets (over 10,000
material samples and 1 million social media
profiles). The proposed scalable systems are
ready for implementation in applications for
new materials development and online
community monitoring.

interpretation. Their practical value is confirmed
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